Notation

 $\mathbb{Z} =$ the set of integers $\mathbb{N} = \{n \in \mathbb{Z} : n \geq 1\}$ \mathbb{R} = the set of real numbers \mathbb{Q} = the set of rational numbers $\mathbb{C} =$ the set of complex numbers

(1) Let H be a Hilbert space and S be a subspace of H. Let $x \in H$ and $||x|| = 1$. Prove that

$$
\inf_{z \in S^{\perp}} \|x - z\| = \sup \{ |\langle x, y \rangle| : y \in S, \|y\| \le 1 \}.
$$

(2) Let A be an $n \times n$ complex matrix, and suppose that

 $A^n \neq 0.$

Prove that

 $A^k \neq 0,$

for all $k \in \mathbb{N}$.

(3) Find two non-singular matrices B and C such that

$$
BC + CB = 0.
$$

(4) Let $l^1 = \{ \{\alpha_n\}_{n \geq 1} : \sum_{n \geq 1} |\alpha_n| < \infty \}$ and $l^2 = \{ \{\alpha_n\}_{n \geq 1} : \sum_{n \geq 1} |\alpha_n|^2 < \infty \}$ ∞ } be equipped with the usual norms. Let $T: l¹ \to l²$ be defined by

$$
T(\{\alpha_n\}_{n\geq 1}) = \{\alpha_n\}_{n\geq 1}.
$$

Show that T is a continuous operator which is not a compact operator.

(5) Let R be a commutative ring with 1 and P be a prime ideal of R. Consider the polynomial ring $R[x]$ and let $P[x]$ be the ideal of $R[x]$ consisting of polynomials whose coefficients all belong to P . Show that the ideal

$$
P[x] + \langle x \rangle := \{ f(x) + xg(x) : f(x) \in P[x], g(x) \in R[x] \},\
$$

is a prime ideal of $R[x]$.

(6) Fix $n \in \mathbb{N}$. Count the number of functions $h: \{1, 2, 3, \ldots, 2n\} \rightarrow \{1, -1\}$ such that

$$
\sum_{j=1}^{2n} h(j) > 0.
$$

(7) Let $q, q' \in \mathbb{N}$ and suppose that q' divides q. Let $U(m)$ denote the multiplicative group of residue classes coprime to m , that is

$$
U(m) = \Big(\mathbb{Z}/m\mathbb{Z}\Big)^*.
$$

Let $\pi: U(q) \to U(q')$ be such that if $a \in U(q)$, $\pi(a)$ is the unique element in $U(q')$ such that

 $a \equiv \pi(a) \pmod{q'}.$

Show that π is onto.

- (8) Let G be a group of order 12. Prove that G has a normal subgroup of order 3 or 4.
- (9) Define $\phi : \mathbb{N} \to \mathbb{N}$ by $\phi(m)$ equals the number of elements in

$$
\{k: 1 \le k \le m, \text{ g.c.d}(k, m) = 1\}.
$$

Let $n \in \mathbb{N}$, $n \geq 2$. Show that $\phi(2^n - 1)$ is divisible by n.

(10) Prove that $(\mathbb{Q}, +)$ and $(\mathbb{Q} \times \mathbb{Q}, +)$ are not isomorphic as groups.

